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1. Introduction

Recently, combined methods have been introduced for the determination
of the deflections of the vertical. Those methods may, first of all, incorporate
the following data: satellite derived potential coefficients, mean gravity anomalies
and point gravity observations. The idea is that the inner zone is determined in
detail from the point anomalies, for instance, by using the method of least-squares
collocation, while the effect of an intermediate zone is calculated with the Vening
Meinesz' formula using mean gravity anomalies, and finally, the remote zone
contribution is represented by a spherical harmonic expansion.

In this paper we are going to study the errors of the combined method.
The investigation is mainly restricted to the errors of the intermediate and remote
zones. The error contribution of the inner zone differs being much dependent on
the method of computation and density and quality of the data. For this zone, we
will adopt some representative values found in the literature.

2. Computational Method

We briefly summarize the combined method presented in Lachapelle
(1977). The components £ and 7 are considered to consist of three subcomponents
(€0, €15 €25 Mo, M1, M2) such that:

(H E=E0+&, +&s
and
M= MNot+tT *+ Nz

Each of the subcomponents is the contribution of the deflections from a specific
zone around the point of computation (see Figure 1). Exceptions are £, and 7o,
which also serve as ''reference field" in 0, and 02 .

% &7

Figure 1. Subdivision of the Surface Around the Point of Computation
into mner Zone (0,), Intermediate Zone (0z) and Remote
Zone (0q4).




The values of £, and 7o are computed from the fully normalized potential coeff-
icients J,; and K,, in the following way (Lachapelle, ibid., p. 3):

Nyax

UL sz[Jn.{ "} R @)+ B 09} 5 0,0

No a

n=2 m

where n,.x is the maximum degree of expansion, and:

Rua (P, A) cosmA
Do {§,,.,(<p,)\)} {sm m)t} do Pua (sin @)

Rua(©, Q) -sin mA
D {§nn(¢,k)} { cosmA }p“ S OS(P

rs/r = ratio between the radius (rs) of the internal sphere
(to which J,,. and K,, are referred) and the radius
(r) of the point of computation.

Remark 1. Formula (2) is a slight generalization ot Lachapelle's formula for points
at an arbitrary height above the sphere to which the coefficients 3,,"; and K,, refer.
For low degree expansions at the surface of the earth ms/r =1 is a good approxi-
mation.

The values of £2 and 7z are obtained by applying Vening Meinesz'
integral formula to gravity anomalies that are formed by subtracting from mean
terrestrial free-air anomalies (Ag) the contribution (Ags) implied by the potential
coefficients used in computing £, and 1o . This computation, which is carried
out for the zone 0, with ¥, < ¥ < ¥, , can be expressed in the following way:

cos «&

3 { } 4nG .rj (42 - Agy) ESJE_ {sm a}do

where S(¥) is Stokes' function, do is an elemental area, and & is the azimuth
from the point of computation to a current point.




The classical Vening Meinesz' formula is valid strictly only for a
sphere. However, terrestrial data Ag may be used provided that either they
are continued analytically to the internal sphere or that a terrain correction
(Molodenskii term) is applied to Ag (Heiskanen and Moritz, 1967, pp. 315 and
313, respectively).

Lachapelle (ibid.) used 1°x 1° mean gravity anomalies for these
computations, which were extended to i, = 8°. ¥, varied between 077 and
1°5, depending on the density of the point gravity data in the inner zone.

The values of £, and 7, may be obtained in different ways;
Lachapelle (ibid.) used least squares collocation. Such an approach has the
advantage that there is no difficulty to compute the effect of the innermost zone
and we can easily incorporate heterogeneous data in the computations. As
pointed out by Tscherning (1974) a considerable gain in accuracy will be achieved
if we include astrogeodetic deflection of the vertical in the set of observations.
On the other hand, we have to limit the number of observations to a few hundred
in order to keep the computer time at a reasonable level. Another difficulty is
the instability that occurs if two observations are located close to each other.
The original Vening Meinesz' formula does not suffer from these limitations.

3. Error Analysis

We now study the error propagation due to the data and other sources.
It is assumed that the numerical integration of Vening Meinesz' formula is per-
formed with such an accuracy that the integration errors can be neglected.
Furthermore, the model errors caused by disregarding the flattening of the
earth (in the order of 3 x 10”°) are not considered.

The gravity data are assumed to be corrected for the terrain effect in
Vening Meinesz' formula, If this eorrection is omitted, an additional error in the
order of 0!'2, is introduced (Moritz, 1966; Dimitrijevich, 1972).

The effect of the earth's atmosphere can be estimated in the following
way (Moritz, 1974). A constant distribution of air is assumed above the reference
ellipsoid. This homogeneous mass has no effect on the deflection. Next, the
fictitious density of the atmosphere in ide the topography (above the reference
ellipsoid) is subtracted from the density of the topography. (This modified density
of the topography can be used for a simultaneous correction for terrain and
atmosphere.) We obtain the following contribution from each compartment to the
correction for the atmosphere:

density of atmosphere

atm. corr, = - terrain corr. x

density of topography




As the terrain correction is in the order 0!'2 it is obvious that the atmosphere has
no practical effect on the deflections of the vertical.

Finally, we regard the earth constants as known (without errors).

3.1 Errors from the Remote Zone

The error contribution of the remote zone is dependent on the spherical
distance Y. (see Figure 1). A formula for the RMS influence of his zone on the
total deflection of the vertical:

(4) @=i e s n®

is given in Heiskanen and Moritz (1967, p. 262). However, as pointed out by
deWitte(1966) and Hagiwara (1972), Molodenskii's truncation coefficients, Q,, in
this formula need to be modified. A generalization is obtained by substituting c,

by (re/r)z(“+2) ¢, (cf. Remark 1). With these modifications, the mean square

contribution of the remote zone becomes:

1 o e rg 2ln+1)
00"« g ] 200 T 0 (2]
(%) 6 i nm+1) Q. (¥2) = Cn ;
n=2
;
where
€n = anomaly degree variances at the internal (Bjerhammar)
sphere

Qn(¥2)= Q. (¥a) + S(¥2) P, (cos ¥z) sin¥z/n(n+1)
S (¥2) Stokes' function
VYa geocentric distance of truncation

As the spherical harmonic expansion for a given set of coefficients can be regarded
as a reference field in the inner and intermediate zones, errors in the coefficients
will influence the remote zone contributions only. Thus, the errors of the remote
zones are of two kinds: the potential coefficient errors and the truncation errors.
From (2) and (5) we obtain the following mean square propagation of the potential
coefficient errors:




n

I‘B):—:(Mz)

(6) 66;’,1 = S‘ n(n+1) Qr (¥a) (‘—‘ de,
n=2

.0
4G? r

where dc, is the mean square error of ¢,. This error can be determined in the
following way.

Let us expand the gravity anomaly (Ag*) at the internal sphere (rs = r)
into a series of spherical harmonics to degree n,.x [cf. (2)]:

nmax

(7) Ag*=Y ogh

Fad

=
where

Ag",i = Gn- 1) ? [:f:; Enm“p’ A) + I_<nm§nm ((p’A)]

m=0
Thus, the coefficient errors 6 J,, and 0K,, are propagated according to:

80gh = G(-1) ) (63 Rus(®@ M) + 0K pe Boa (0, 1))

n= O

and the global mean square error of c, is finally given by:

(8) de, = M{6Agi®) = G(n-1)° ) (8Tm + ORn)

n=0

where M {x} is the global average of x:
| sl
M{x}= & ” x do
4m
o

In (8) we have used the orthogonality property of the spherical harmonics over a
sphere. For a different estimate of 6c,, see Rapp (1973). In Table 1 we give
the mean square errors O0c, computed from the errors of the GEM 7 coefficients
(Wagner, 1976).




Table 1. Mean Square Errors of the Degree Variances
for GEM 7 from Wagner (1976, Table 27).
Fully Normalized Harmonics. G = 980 gal.

n 602 102°* 6 ¢, [mgal®]+
2 35 0.0000
3 357 0.0014
4 219 0.0019
5 938 0.0144
6 715 0.0172
7 2103 0.0727
8 1710 0.0805
9 3368 0.2070

10 3191 0.2503

11 5990 0.5753

12 4924 0.5722

13 7865 1.0877

14 7247 1.1762

15 11271 2.1216

16 11357 2.4541

* 802 =) (6T + O6Km)

L

n=0

t 6c, = G°(n-1° 603

Finally, by inserting these values for 8c, into formula (6), the potential coefficient
error for n,,, = 16 was determined. The ratio rs/r was set equal to 1 in this low
degree expansion. The result is depicted in Figure 2.

The other error source of the remote zone, the error due to the
«vuoo.om of the spherical harmonic expansion, is also given by formula (5). The
mean square value of the truncation error is:

o i 2(n+2)
9) 665,z = Z(l;.én\j : nm+1) Q. ¥a) (%) c.,




For the numerical computation of this error, we use the degree variances c,
of Tscherning and Rapp (1974):

(10) ¢,= A(n-1)/(n-2)(n+24), n=3
s = (rs/r)° = 0.999617
A = 425,28 mgal®

The convergence of (9) is very slow for ¢, close to 0 while for larger angles,
say ¥z 2> 5°, it converges well. Formula (9) is illustrated in Figure 2. The
excellent subroutine of Paul (1973) was used for a rapid determination of Q. ,
and the series was truncated at n = 2000. A remarkable minimum (0.'06) of the
RMS error is obtained for ¥, = 40°.

3.2 Errors Due to Lack of More Detailed Data in 0

The application of Vening Meinesz' formula (3) for the determination
of £z and 7m, requires, theoretically, that Ag is known at each point in 0z. In
practice we limit ourselves to using mean gravity anomalies in this area. We
shall now estimate the error due to the lack of more detailed gravity material in
0. . The data is assumed to be located on 2 mean earth sphere of radius r.

Let us expand Ag into Laplace harmonics:

The mean gravity field (Ag) is related to Ag according to:

4g (y) = ” B (y-x) Ag do = i B. Ag.
o n==2

where B (y*x) is the averaging operator and B, are its eigen values. If we
approximate each block of mean anomalies with a circular cap with equal area we
obtain (see Meissl, 1971, p. 24):
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(11) ﬁn = [Pn_l(cost) - Pnsq (coswo)]/(z n+1)(1-COSl,bo)

where Y, is the spherical radius of the cap. If v is the block size, then ¢, is
given by :

YYo=,/ Vsinv/n

Now the error at each point when representing Ag by Ag is:

Lo

O
(4)°]

I
£

]
B

I
~18

(1~ Bn) Agn

2

|

Following the derivation of formula (5) in Heiskanen and Moritz (1967, pp. 261-
262), we obtain the following error propagation of 6g outside the spherical
distance .

The error of each component £ and 77 becomes:

i o)

| 6 - R

| {ai}z'z_lczé""p){ S
= coswﬁ

and the total RMS error is given by:

66° = M {6£2+ 6% ) =

e 1

Vi : &
o Qn(¢)Qn'(w)M{%§(-p§E—dgL+_12_ g, 20w} .

A
Ao cos“® dA A

Il | ~]8
TL~1s

n 2

g |

= QoW)nm+1) M{6g3)

Il §~8

n

2




where

ng = (L~ ﬁn) Ag,
and

< 2(n+2)
M {6g3) = (1- B.F M {Ag2 ) =(1- 8, (%)

— C,
r

Hence, by using Vening Meinesz' formula outside the spherical distance ¥ , the
following mean square error (due to neglecting more detailed data) is committed:

2(n+2)

-2 2 (g
Q: (¥) n(n+1) (1-8,) <T) Ca

\/JB

§6° =1L
4G° !

n

L

=2

I

Finally, the corresponding contribution from the zone 0 is given by:

o i, 2(n+2)
a2 065, = 5 (Qiwy-Qiwal nerna-8D) (52)

Chn
r
n==2

L

As B, approaches 0 for large n this formula suffers from the same slow conver-
gence as (9) for small angles ¢,. For 1°<y,< 4° (12) was expanded to n = 5000.
For larger ¥,, n = 2000 was found to be a sufficient degree of truncation v=1%.
The results are shown in Figure 3.

3.3 Errors Due to Inaccurate Gravity Material in O,

A constant error in Ag will not affect the deflections of the vertical,
because there is no zero-order term present in £ and 7. Hence, the only error
source that has to be considered is the random errors due to insufficient gravity
data within each block to assure an accurate determination of the mean value.
The propagation of this error is given by (3). We obtain approximately:

2 = ds 2
(13) 665,35 = (—EIG? z mf Lfi _5'!(1)—)_ do]
i
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where m, is the standard error of Agand 0, is the area of block i. The
evaluation of (13) requires that m, is known for all blocks used in the deter-
mination of £z and n.. It will therefore be very much dependent on the quality
of the mean anomalies and will vary for each point of computation. In Table 2,
we report the computations in four specific points. The computations are based
on the 1°x 1° anomaly information described in Rapp (1977). For unknown
blocks m, is set to 30 mgal. In this table we also show the error estimates of
Groten and Moritz (1964). By assuming uniform errors of all Ag blocks, they
arrived at the following formula:

(14) 663, =

JW,)-JW
SW(Gr)a [ ( 1) ( 2)]

where

S = 0.027 r° (1°x 1° blocks, 1 gravity profile inside each block).
Formula (14) seems to give a reasonable approximation of 66 2 for ¥, > 2°,
specially in areas with a poor gravity material (points 2 and 4).

In Table 2 we also report the sum of squares of the errors considered
above (the error of the inner zone is not included). From these results we conclude
that the RMS errors are significantly decreasing with an increasing angle ¥ - all the
way to 30°,

3.4 An Extended View

On the basis of the previous computation results, it is also of interest to
study the errors when ¥ ; is extended beyond 30°. However, such an extension
would include large areas where no 1°x 1° gravity material exists today. In these
computations, we will therefore assume that we have such a material with a uniform
error of all blocks. Thus, we can apply formula (14) for the computation of 66 2.
The resulting RMS errors are shown in Figure 4.

From Figures 2 and 4 we conclude that a dominating error source is the

truncation of the spherical harmonic expansion. A significant minimum of the RMS
error is obtained for ¥z = 40° It is unreasonable to extend ¢ beyond this minimum.
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3.5 The Immer Zone Error and the Total Error

The error of the inner zone depends on the quality and distribution of
the observations in this area. To some extent it will also vary with the method
used in the computations. By using least squares collocation with approximately
200 observations, Lachapelle (ibid.) estimated the errors of £, and 7, to about
1V'3. These errors were rather independent of the cap size ¥,, which varied
between 097 and 155 in the computations. Hence, by using this technique, the
total RMS error of 6 will be in the order of 2!2 for ¥,=1° and ¥, = 40°.

Kearsley (1976) applied the original Vening Meinesz' formula with
the well-known subdivision into Rice Rings. The inner zone errors of £, and 7,
were about 0!'3 for ¢, ~ 1°. Thus, a total RMS error of 6 in the order of 1!'3
(for Y2 = 40°) seems possible to achieve in an intensive determination of the
inner zone contribution. Even though the same accuracy might be possible to
obtain by using least squares collocation, there are practical limits of the number
of observations in this method (Lachapelle, ibid., p. 6). Here we refer to
6£=0n=0!3 as the accuracy of Vening Meinesz' formula. Some total RMS
errors based on the above estimates of 66, are given in Table 3.

Table 3. Total RMS Errors of the Deflections of the Vertical
for ¥, = 1°

P 5° 10° 20° 30° 40°

Collocation 66,=1!"84 2'188 2157 2134 224 21122

Vening Meinesz 66,= 0!'42 2126 185 11'50 135 132

Lachapelle (ibid.) compared predicted deflections of the vertical at
some 169 astrogeodetic stations with the astrogeodetic deflection components,
The RMS difference between the total deflections was 2!'12. This result agrees
fairly well with Table 3,

4, Summary and Conclusions

In this paper we have studied possible error sources for the
determination of the deflections of the vertical by using a combined method. The
investigation deals mainly with the errors generated in the intermediate and
remote zone, while for the inner zone, some error figures have been adopted
from earlier studies. The numerical results are shown in Tables 2 - 3 and
Figures 2 - 4,
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We assume that the only contribution to £ and 7 from the remote zone
is a spherical harmonic expansion to degree 16. The RMS truncation error of
such a series was found considerably sensitive to changes in the distance of
truncation, ¥, (see Figure 2). A local minimum (66, = 0!'06) is obtained for
wa = 400 .

In the intermediate zone the gravity field was assumed to be repre-
sented by 1°x 1° mean anomalies. The error due to lack of a more detailed
gravity material is depicted in Figure 3. This error source can be diminished .
by using a more detailed subdivision of the blocks between the distances 1° and
10° from the computation point.

The error propagation of the mean anomaly errors (66;,z) is shown
in Table 2 for four selected points. A reasonable approximation of these errors
is obtained by using formula (14) according to Moritz and Groten.

The RMS sum of the errors of the intermediate and remote zone is
given in Figure 4. A significant gain in accuracy is achieved by extending ¥ to
at least 30°. A minimum is obtained for ¥; = 40°, Finally, by adding a repre-
sentative error for the inner zone computation, the total RMS error was estimated
(Table 3), If the inner zone is determined by the method of least squares colloca-
tion, the total RMS error will bardly be less than 2!'2 (¢, = 1°), Substituting this
method with an accurate version of Vening Meinesz' formula, the final error
might decrease to 1!'3, Further improvements are expected for a refined sub-
division of the intermediate zone blocks. In no case should the truncation distance
(¥2) exceed 40°,
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